Arbeitsgemeinschaft: Geometric Representation Theory
dc.bibliographicCitation.journalTitle | Oberwolfach reports : OWR | |
dc.bibliographicCitation.volume | 18 | |
dc.contributor.other | Juteau, Daniel | |
dc.contributor.other | Riche, Simon | |
dc.contributor.other | Soergel, Wolfgang | |
dc.contributor.other | Williamson, Geordie | |
dc.date.accessioned | 2024-10-17T12:12:46Z | |
dc.date.available | 2024-10-17T12:12:46Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Our understanding of algebraic representations of reductive algebraic groups in positive characteristic has seen big advances in the last years and has been largely transformed into the geometric theory of studying parity sheaves on affine Grassmannians and affine flag varieties or, equivalently and more combinatorially, the diagrammatic Hecke category. This has led, among other things, to a geometric proof of the linkage principle and a greatly simplified proof of Lusztig's character formula for large characteristics. | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/17015 | |
dc.identifier.uri | https://doi.org/10.34657/16037 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWR-2022-18 | |
dc.relation.essn | 1660-8941 | |
dc.relation.issn | 1660-8933 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | |
dc.subject.ddc | 510 | |
dc.subject.gnd | Konferenzschrift | |
dc.title | Arbeitsgemeinschaft: Geometric Representation Theory | |
dc.type | Article | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWR_2022_18.pdf
- Size:
- 499.08 KB
- Format:
- Adobe Portable Document Format
- Description: