Global and trajectory attractors for a nonlocal Cahn-Hilliard-Navier-Stokes system

dc.contributor.authorFrigeri, Sergio
dc.contributor.authorGrasselli, Maurizio
dc.date.accessioned2016-06-22T05:45:05Z
dc.date.available2019-06-28T08:10:17Z
dc.date.issued2011
dc.description.abstractThe Cahn-Hilliard-Navier-Stokes system is based on a well-known diffuse interface model and describes the evolution of an incompressible isothermal mixture of binary fluids. A nonlocal variant consists of the Navier-Stokes equations suitably coupled with a nonlocal Cahn-Hilliard equation. The authors, jointly with P. Colli, have already proven the existence of a global weak solution to a nonlocal Cahn-Hilliard-Navier-Stokes system subject to no-slip and no-flux boundary conditions. Uniqueness is still an open issue even in dimension two. However, in this case, the energy identity holds. This property is exploited here to define, following J.M. Ball's approach, a generalized semiflow which has a global attractor. Through a similar argument, we can also show the existence of a (connected) global attractor for the convective nonlocal Cahn-Hilliard equation with a given velocity field, even in dimension three. Finally, we demonstrate that any weak solution fulfilling the energy inequality also satisfies an energy inequality. This allows us to establish the existence of the trajectory attractor also in dimension three with a time dependent external force.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2721
dc.language.isoengeng
dc.publisherHeidelberg : Springereng
dc.relation.doihttps://doi.org/10.1007/s10884-012-9272-3
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherNavier-Stokes equationseng
dc.subject.othernonlocal Cahn-Hilliard equationseng
dc.subject.otherincom- pressible binary fluidseng
dc.subject.otherglobal attractorseng
dc.subject.othertrajectory attractorseng
dc.titleGlobal and trajectory attractors for a nonlocal Cahn-Hilliard-Navier-Stokes systemeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections