Cytoskeletal transition in patterned cells correlates with interfacial energy model

dc.bibliographicCitation.firstPage2444eng
dc.bibliographicCitation.issue14eng
dc.bibliographicCitation.journalTitleSoft Mattereng
dc.bibliographicCitation.volume10eng
dc.contributor.authorMüller, A.
dc.contributor.authorMeyer, J.
dc.contributor.authorPaumer, T.
dc.contributor.authorPompe, T.
dc.date.accessioned2020-11-20T17:21:07Z
dc.date.available2020-11-20T17:21:07Z
dc.date.issued2014
dc.description.abstractA cell's morphology is intricately regulated by microenvironmental cues and intracellular feedback signals. Besides biochemical factors, cell fate can be influenced by the mechanics and geometry of the surrounding matrix. The latter point was addressed herein, by studying cell adhesion on two-dimensional micropatterns. Endothelial cells were grown on maleic acid copolymer surfaces structured with stripes of fibronectin by microcontact printing. Experiments showed a biphasic behaviour of actin stress fibre spacing in dependence on the stripe width with a critical size of approx. 15 μm. In a concurrent modelling effort, cells on stripes were simulated as droplet-like structures, including variations of interfacial energy, total volume and dimensions of the nucleus. A biphasic behaviour with regard to cell morphology and area was found, triggered by the minimum of interfacial energy, with the phase transition occurring at a critical stripe width close to the critical stripe width found in the cell experiment. The correlation of experiment and simulation suggests a possible mechanism of the cytoskeletal rearrangements based on interfacial energy arguments.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4572
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5943
dc.language.isoengeng
dc.publisherLondon [u.a.] : Royal Society of Chemistryeng
dc.relation.doihttps://doi.org/10.1039/c3sm52424h
dc.relation.issn1744-683X
dc.rights.licenseCC BY-NC 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/eng
dc.subject.ddc570eng
dc.subject.otherCell adhesioneng
dc.subject.otherElectron device manufactureeng
dc.subject.otherEndothelial cellseng
dc.subject.otherExperimentseng
dc.subject.otherMorphologyeng
dc.subject.otherProteinseng
dc.subject.otherBiphasic behavioureng
dc.subject.otherCell morphologyeng
dc.subject.otherCytoskeletal rearrangementseng
dc.subject.otherFeedback signaleng
dc.subject.otherMaleic acid copolymerseng
dc.subject.otherMicro contact printingeng
dc.subject.otherPossible mechanismseng
dc.subject.otherSurrounding matrixeng
dc.subject.otherInterfacial energyeng
dc.subject.otherfibronectineng
dc.subject.othermaleic acideng
dc.subject.othermaleic acid derivativeeng
dc.subject.othertissue scaffoldeng
dc.subject.otherarticleeng
dc.subject.otherbiological modeleng
dc.subject.othercell adhesioneng
dc.subject.otherchemistryeng
dc.subject.otherhumaneng
dc.subject.othermetabolismeng
dc.subject.otherphysiologyeng
dc.subject.otherstress fibereng
dc.subject.otherthermodynamicseng
dc.subject.otherumbilical vein endothelial celleng
dc.subject.otherCell Adhesioneng
dc.subject.otherFibronectinseng
dc.subject.otherHuman Umbilical Vein Endothelial Cellseng
dc.subject.otherHumanseng
dc.subject.otherMaleateseng
dc.subject.otherModels, Biologicaleng
dc.subject.otherStress Fiberseng
dc.subject.otherThermodynamicseng
dc.subject.otherTissue Scaffoldseng
dc.titleCytoskeletal transition in patterned cells correlates with interfacial energy modeleng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectBiowissenschaften/Biologieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Müller2014.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format
Description: