Cytoskeletal transition in patterned cells correlates with interfacial energy model

dc.bibliographicCitation.firstPage2444eng
dc.bibliographicCitation.issue14eng
dc.bibliographicCitation.volume10eng
dc.contributor.authorMüller, A.
dc.contributor.authorMeyer, J.
dc.contributor.authorPaumer, T.
dc.contributor.authorPompe, T.
dc.date.accessioned2020-11-20T17:21:07Z
dc.date.available2020-11-20T17:21:07Z
dc.date.issued2014
dc.description.abstractA cell's morphology is intricately regulated by microenvironmental cues and intracellular feedback signals. Besides biochemical factors, cell fate can be influenced by the mechanics and geometry of the surrounding matrix. The latter point was addressed herein, by studying cell adhesion on two-dimensional micropatterns. Endothelial cells were grown on maleic acid copolymer surfaces structured with stripes of fibronectin by microcontact printing. Experiments showed a biphasic behaviour of actin stress fibre spacing in dependence on the stripe width with a critical size of approx. 15 μm. In a concurrent modelling effort, cells on stripes were simulated as droplet-like structures, including variations of interfacial energy, total volume and dimensions of the nucleus. A biphasic behaviour with regard to cell morphology and area was found, triggered by the minimum of interfacial energy, with the phase transition occurring at a critical stripe width close to the critical stripe width found in the cell experiment. The correlation of experiment and simulation suggests a possible mechanism of the cytoskeletal rearrangements based on interfacial energy arguments.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4572
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5943
dc.language.isoengeng
dc.publisherLondon [u.a.] : Royal Society of Chemistryeng
dc.relation.doihttps://doi.org/10.1039/c3sm52424h
dc.relation.ispartofseriesSoft Matter 10 (2014), Nr. 14eng
dc.relation.issn1744-683X
dc.rights.licenseCC BY-NC 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/eng
dc.subjectCell adhesioneng
dc.subjectElectron device manufactureeng
dc.subjectEndothelial cellseng
dc.subjectExperimentseng
dc.subjectMorphologyeng
dc.subjectProteinseng
dc.subjectBiphasic behavioureng
dc.subjectCell morphologyeng
dc.subjectCytoskeletal rearrangementseng
dc.subjectFeedback signaleng
dc.subjectMaleic acid copolymerseng
dc.subjectMicro contact printingeng
dc.subjectPossible mechanismseng
dc.subjectSurrounding matrixeng
dc.subjectInterfacial energyeng
dc.subjectfibronectineng
dc.subjectmaleic acideng
dc.subjectmaleic acid derivativeeng
dc.subjecttissue scaffoldeng
dc.subjectarticleeng
dc.subjectbiological modeleng
dc.subjectcell adhesioneng
dc.subjectchemistryeng
dc.subjecthumaneng
dc.subjectmetabolismeng
dc.subjectphysiologyeng
dc.subjectstress fibereng
dc.subjectthermodynamicseng
dc.subjectumbilical vein endothelial celleng
dc.subjectCell Adhesioneng
dc.subjectFibronectinseng
dc.subjectHuman Umbilical Vein Endothelial Cellseng
dc.subjectHumanseng
dc.subjectMaleateseng
dc.subjectModels, Biologicaleng
dc.subjectStress Fiberseng
dc.subjectThermodynamicseng
dc.subjectTissue Scaffoldseng
dc.subject.ddc570eng
dc.titleCytoskeletal transition in patterned cells correlates with interfacial energy modeleng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleSoft Mattereng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectBiowissenschaften/Biologieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Müller2014.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format
Description: