Mini-Workshop: Superexpanders and Their Coarse Geometry

dc.bibliographicCitation.firstPage1117
dc.bibliographicCitation.lastPage1160
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume19
dc.contributor.otherde Laat, Tim
dc.contributor.otherde la Salle, Mikael
dc.date.accessioned2023-12-15T09:50:14Z
dc.date.available2023-12-15T09:50:14Z
dc.date.issued2018
dc.description.abstractIt is a deep open problem whether all expanders are superexpanders. In fact, it was already a major challenge to prove the mere existence of superexpanders. However, by now, some classes of examples are known: Lafforgue’s expanders constructed as sequences of finite quotients of groups with strong Banach property (T), the examples coming from zigzag products due to Mendel and Naor, and the recent examples coming from group actions on compact manifolds. The methods which are used to construct superexpanders are typically functional analytic in nature, but also rely on arguments from geometry and combinatorics. Another important aspect of the study of superexpanders is their (coarse) geometry, in particular in order to distinguish them from each other. The aim of this workshop was to bring together researchers working on superexpanders and their coarse geometry from different perspectives, with the aim of sharing expertise and stimulating new research.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13351
dc.identifier.urihttps://doi.org/10.34657/12381
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2018-19
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleMini-Workshop: Superexpanders and Their Coarse Geometryeng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventMini-Workshop: Superexpanders and Their Coarse Geometry, 15 Apr - 21 Apr 2018, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2018_19.pdf
Size:
383.39 KB
Format:
Adobe Portable Document Format
Description: