Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance

dc.bibliographicCitation.firstPage1717
dc.bibliographicCitation.issue6
dc.bibliographicCitation.journalTitleEnergy & environmental scienceeng
dc.bibliographicCitation.lastPage1724
dc.bibliographicCitation.volume13
dc.contributor.authorPan, Yu
dc.contributor.authorYao, Mengyu
dc.contributor.authorHong, Xiaochen
dc.contributor.authorZhu, Yifan
dc.contributor.authorFan, Fengren
dc.contributor.authorImasato, Kazuki
dc.contributor.authorHe, Yangkun
dc.contributor.authorHess, Christian
dc.contributor.authorFink, Jörg
dc.contributor.authorYang, Jiong
dc.contributor.authorBüchner, Bernd
dc.contributor.authorFu, Chenguang
dc.contributor.authorSnyder, G. Jeffrey
dc.contributor.authorFelser, Claudia
dc.date.accessioned2022-12-01T13:15:40Z
dc.date.available2022-12-01T13:15:40Z
dc.date.issued2020
dc.description.abstractThe rapid growth of the thermoelectric cooler market makes the development of novel room temperature thermoelectric materials of great importance. Ternary n-type Mg3(Bi,Sb)2 alloys are promising alternatives to the state-of-the-art Bi2(Te,Se)3 alloys but grain boundary resistance is the most important limitation. n-type Mg3(Bi,Sb)2 single crystals with negligible grain boundaries are expected to have particularly high zT but have rarely been realized due to the demanding Mg-rich growth conditions required. Here, we report, for the first time, the thermoelectric properties of n-type Mg3(Bi,Sb)2 alloyed single crystals grown by a one-step Mg-flux method using sealed tantalum tubes. High weighted mobility ∼140 cm2 V−1 s−1 and a high zT of 0.82 at 315 K are achieved in Y-doped Mg3Bi1.25Sb0.75 single crystals. Through both experimental angle-resolved photoemission spectroscopy and theoretical calculations, we denote the origin of the high thermoelectric performance from a point of view of band widening effect and electronegativity, as well as the necessity to form high Bi/Sb ratio ternary Mg3(Bi,Sb)2 alloys. The present work paves the way for further development of Mg3(Bi,Sb)2 for near room temperature thermoelectric applications.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10466
dc.identifier.urihttp://dx.doi.org/10.34657/9502
dc.language.isoeng
dc.publisherCambridge : RSC Publ.
dc.relation.doihttps://doi.org/10.1039/d0ee00838a
dc.relation.essn1754-5706
dc.rights.licenseCC BY 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subject.ddc690
dc.subject.otherBismuth metallographyeng
dc.subject.otherChemical bondseng
dc.subject.otherElectronegativityeng
dc.subject.otherGrain boundarieseng
dc.subject.otherPhotoelectron spectroscopyeng
dc.subject.otherSingle crystalseng
dc.subject.otherThermoelectric equipmenteng
dc.subject.otherThermoelectricityeng
dc.subject.otherAngle resolved photoemission spectroscopyeng
dc.subject.otherGrain boundary resistanceeng
dc.subject.otherTheoretical calculationseng
dc.subject.otherThermo-Electric materialseng
dc.subject.otherThermoelectric applicationeng
dc.subject.otherThermoelectric coolereng
dc.subject.otherThermoelectric performanceeng
dc.subject.otherThermoelectric propertieseng
dc.subject.otherYttrium compoundseng
dc.titleMg3(Bi,Sb)2 single crystals towards high thermoelectric performanceeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWD
wgl.subjectUmweltwissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
d0ee00838a.pdf
Size:
3.7 MB
Format:
Adobe Portable Document Format
Description: