Discrete non-commutative integrability: The proof of a conjecture by M. Kontsevich
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2009-24 | |
dc.contributor.author | Di Francesco, Philippe | |
dc.contributor.author | Kedem, Rinat | |
dc.date.available | 2019-06-28T08:08:38Z | |
dc.date.issued | 2009 | |
dc.description.abstract | We prove a conjecture of Kontsevich regarding the solutions of rank two recursion relations for non-commutative variables which, in the ommutative case, reduce to rank two cluster algebras of affine type. The conjecture states that solutions are positive Laurent polynomials in the initial cluster variables. We prove this by use of a non-commutative version of the path models which we used for the commutative case. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/2224 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2596 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | eng |
dc.relation.doi | https://doi.org/10.14760/OWP-2009-24 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.title | Discrete non-commutative integrability: The proof of a conjecture by M. Kontsevich | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2009_24.pdf
- Size:
- 204.13 KB
- Format:
- Adobe Portable Document Format
- Description: