A new counting function for the zeros of holomorphic curves

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2009-25
dc.contributor.authorAnderson, J.M.
dc.contributor.authorHinkkanen, Aimo
dc.date.available2019-06-28T08:06:56Z
dc.date.issued2009
dc.description.abstractLet f1, . . . , fp be entire functions that do not all vanish at any point, so that (f1, . . . , fp) is a holomorphic curve in CPp−1. We introduce a new and more careful notion of counting the order of the zero of a linear combination of the functions f1, . . . , fp at any point where such a linear combination vanishes, and, if all the f1, . . . , fp are polynomials, also at infinity. This enables us to formulate an inequality, which sometimes holds as an identity, that sharpens the classical results of Cartan and others.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/1849
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2457
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2009-25
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherHolomorphic curveseng
dc.subject.otherprojective spaceseng
dc.subject.otherzeroseng
dc.subject.othervalue distributioneng
dc.subject.otherNevanlinna theoryeng
dc.subject.otherCartan theoryeng
dc.titleA new counting function for the zeros of holomorphic curveseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2009_25.pdf
Size:
268.86 KB
Format:
Adobe Portable Document Format
Description: