Mini-Workshop: Nonlinear Approximation of High-dimensional Functions in Scientific Computing

dc.bibliographicCitation.journalTitleOberwolfach reports : OWR
dc.bibliographicCitation.volume48
dc.contributor.otherOster, Mathias
dc.contributor.otherSchütte, Janina
dc.contributor.otherTrunschke, Philipp
dc.date.accessioned2024-10-18T08:29:04Z
dc.date.available2024-10-18T08:29:04Z
dc.date.issued2023
dc.description.abstractApproximation techniques for high dimensional PDEs are crucial for contemporary scientific computing tasks and gained momentum in recent years due to the renewed interest in neural networks. It seems that especially nonlinear parametrizations will play an essential role in efficient and tractable approximations of high dimensional problems. We held a mini-workshop on the relation and possible synergy of neural networks and tensor product approximation. To reliably evaluate the prospect of different numerical experiments, the traditional talks were accompanied by live coding sessions.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/17072
dc.identifier.urihttps://doi.org/10.34657/16094
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWR-2023-48
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.gndKonferenzschrift
dc.titleMini-Workshop: Nonlinear Approximation of High-dimensional Functions in Scientific Computing
dc.typeArticle
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2023_48.pdf
Size:
725.16 KB
Format:
Adobe Portable Document Format
Description: