Max-Linear Models on Infinite Graphs Generated by Bernoulli Bond Percolation

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume9
dc.contributor.authorKlüppelberg, Claudia
dc.contributor.authorSönmez, Ercan
dc.date.accessioned2024-10-16T15:05:26Z
dc.date.available2024-10-16T15:05:26Z
dc.date.issued2018
dc.description.abstractWe extend previous work of max-linear models on finite directed acyclic graphs to infinite graphs, and investigate their relations to classical percolation theory. We formulate results for the oriented square lattice graph Z² and nearest neighbor bond percolation. Focus is on the dependence introduced by this graph into the max-linear model. As a natural application we consider communication networks, in particular, the distribution of extreme opinions in social networks.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16898
dc.identifier.urihttps://doi.org/10.34657/15920
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2018-09
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.otherBernoulli bond percolationeng
dc.subject.otherExtreme value theoryeng
dc.subject.otherGraphical modeleng
dc.subject.otherInfinite grapheng
dc.subject.otherPercolationeng
dc.subject.otherRecursive max-linear modeleng
dc.titleMax-Linear Models on Infinite Graphs Generated by Bernoulli Bond Percolation
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2018_09.pdf
Size:
505.22 KB
Format:
Adobe Portable Document Format
Description: