Herbrand's Theorem as Higher Order Recursion

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume1
dc.contributor.authorAfshari, Bahareh
dc.contributor.authorHetzl, Stefan
dc.contributor.authorLeigh, Graham E.
dc.date.accessioned2024-10-16T15:05:22Z
dc.date.available2024-10-16T15:05:22Z
dc.date.issued2018
dc.description.abstractWe provide a means to compute Herbrand disjunctions directly from sequent calculus proofs with cuts. Our approach associates to a first-order classical proof π + ∃vF, where F is quantifier free, an acyclic higher order recursion scheme H whose language is finite and yields a Herbrand disjunction for ∃vF. More generally, we show that the language of H contains the Herbrand disjunction implicit in any cut-free proof obtained from π via a sequence of Gentzen-style cut reductions that always reduce the weak side of a cut before the strong side.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16871
dc.identifier.urihttps://doi.org/10.34657/15893
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2018-01
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.titleHerbrand's Theorem as Higher Order Recursion
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2018_01.pdf
Size:
705.68 KB
Format:
Adobe Portable Document Format
Description: