Challenges in Statistical Theory: Complex Data Structures and Algorithmic Optimization
dc.bibliographicCitation.firstPage | 2179 | |
dc.bibliographicCitation.lastPage | 2234 | |
dc.bibliographicCitation.seriesTitle | Oberwolfach reports : OWR | eng |
dc.bibliographicCitation.volume | 39 | |
dc.contributor.other | Klüppelberg, Claudia | |
dc.contributor.other | Polonik, Wolfgang | |
dc.date.accessioned | 2023-12-14T13:51:46Z | |
dc.date.available | 2023-12-14T13:51:46Z | |
dc.date.issued | 2009 | |
dc.description.abstract | Technological developments have created a constant incoming stream of complex new data structures that need analysis. Modern statistics therefore means mathematically sophisticated new statistical theory that generates or supports innovative data-analytic methodologies for complex data structures. Inherent in many of these methodologies are challenging numerical optimization methods. The proposed workshop intends to bring together experts from mathematical statistics as well as statisticians involved in serious modern applications and computing. The primary goal of this meeting was to advance the mathematical and methodological underpinnings of modern statistics for complex data. Particular focus was given to the advancement of theory and methods under non-stationarity and complex dependence structures including (multivariate) financial time series, scientific data analysis in neurosciences and bio-physics, estimation under shape constraints, and highdimensional discrimination/classification. | eng |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/12852 | |
dc.identifier.uri | https://doi.org/10.34657/11882 | |
dc.language.iso | eng | |
dc.publisher | Zürich : EMS Publ. House | eng |
dc.relation.doi | https://doi.org/10.14760/OWR-2009-39 | |
dc.relation.essn | 1660-8941 | |
dc.relation.issn | 1660-8933 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.subject.ddc | 510 | |
dc.subject.gnd | Konferenzschrift | ger |
dc.title | Challenges in Statistical Theory: Complex Data Structures and Algorithmic Optimization | eng |
dc.type | Article | eng |
dc.type | Text | eng |
dcterms.event | Workshop Challenges in Statistical Theory: Complex Data Structures and Algorithmic Optimization, 23 Aug - 29 Aug 2009, Oberwolfach | |
tib.accessRights | openAccess | |
wgl.contributor | MFO | |
wgl.subject | Mathematik | |
wgl.type | Zeitschriftenartikel |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWR_2009_39.pdf
- Size:
- 473.79 KB
- Format:
- Adobe Portable Document Format
- Description: