Challenges in Statistical Theory: Complex Data Structures and Algorithmic Optimization

dc.bibliographicCitation.firstPage2179
dc.bibliographicCitation.lastPage2234
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume39
dc.contributor.otherKlüppelberg, Claudia
dc.contributor.otherPolonik, Wolfgang
dc.date.accessioned2023-12-14T13:51:46Z
dc.date.available2023-12-14T13:51:46Z
dc.date.issued2009
dc.description.abstractTechnological developments have created a constant incoming stream of complex new data structures that need analysis. Modern statistics therefore means mathematically sophisticated new statistical theory that generates or supports innovative data-analytic methodologies for complex data structures. Inherent in many of these methodologies are challenging numerical optimization methods. The proposed workshop intends to bring together experts from mathematical statistics as well as statisticians involved in serious modern applications and computing. The primary goal of this meeting was to advance the mathematical and methodological underpinnings of modern statistics for complex data. Particular focus was given to the advancement of theory and methods under non-stationarity and complex dependence structures including (multivariate) financial time series, scientific data analysis in neurosciences and bio-physics, estimation under shape constraints, and highdimensional discrimination/classification.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/12852
dc.identifier.urihttps://doi.org/10.34657/11882
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2009-39
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleChallenges in Statistical Theory: Complex Data Structures and Algorithmic Optimizationeng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Challenges in Statistical Theory: Complex Data Structures and Algorithmic Optimization, 23 Aug - 29 Aug 2009, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2009_39.pdf
Size:
473.79 KB
Format:
Adobe Portable Document Format
Description: