Stationary multivariate subdivision: Joint spectral radius and asymptotic similarity

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2013-20
dc.contributor.authorCharina, Maria
dc.contributor.authorConti, Costanza
dc.contributor.authorGuglielmi, Nicola
dc.contributor.authorProtasov, Vladimir
dc.date.available2019-06-28T08:23:12Z
dc.date.issued2013
dc.description.abstractIn this paper we study scalar multivariate non-stationary subdivision schemes with a general integer dilation matrix. We present a new numerically efficient method for checking convergence and H ̈older regularity of such schemes. This method relies on the concepts of approximate sum rules, asymptotic similarity and the so-called joint spectral radius of a finite set of square matrices. The combination of these concepts allows us to employ recent advances in linear algebra for exact computation of the joint spectral radius that have had already a great impact on studies of stationary subdivision schemes. We also expose the limitations of non-stationary schemes in their capability to reproduce and generate certain function spaces. We illustrate our results with several examples.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3245
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3354
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2013-20
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherMultivariate non-stationary subdivision schemeseng
dc.subject.otherapproximate sum ruleseng
dc.subject.otherasymp- totic similarityeng
dc.subject.otherjoint spectral radiuseng
dc.titleStationary multivariate subdivision: Joint spectral radius and asymptotic similarityeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2013_20.pdf
Size:
198.29 KB
Format:
Adobe Portable Document Format
Description: