Applications of Nijenhuis Geometry III: Frobenius Pencils and Compatible Non-Homogeneous Poisson Structures

Loading...
Thumbnail Image
Date
2022
Volume
1
Issue
Journal
Series Titel
Oberwolfach Preprints (OWP)
Book Title
Publisher
Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach
Link to publishers version
Abstract

We consider multicomponent local Poisson structures of the form P₃+P₁, under the assumption that the third order term P₃ is Darboux-Poisson and non-degenerate, and study the Poisson compatibility of two such structures. We give an algebraic interpretation of this problem in terms of Frobenius algebras and reduce it to classification of Frobenius pencils, i.e. of linear families of Frobenius algebras. Then, we completely describe and classify Frobenius pencils under minor genericity conditions. In particular we show that each such Frobenuis pencil is a subpencil of a certain maximal pencil. These maximal pencils are uniquely determined by some combinatorial object, a directed rooted in-forest with vertices labeled by natural numbers whose sum is the dimension of the manifold. These pencils are naturally related to certain (polynomial, in the most nondegenerate case) pencils of Nijenhuis operators. We show that common Frobenius coordinate systems admit an elegant invariant description in terms of the Nijenhuis pencil.

Description
Keywords
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.