Sublinear bounds for a quantitative Doignon-Bell-Scarf Theorem

dc.contributor.authorChestnut, Stephen R.
dc.contributor.authorHildebrand, Robert
dc.contributor.authorZenklusen, Rico
dc.date.accessioned2016-06-28T05:45:32Z
dc.date.available2019-06-28T08:02:21Z
dc.date.issued2015
dc.description.abstractThe recent paper "A quantitative Doignon-Bell-Scarf Theorem" by Aliev et al. generalizes the famous Doignon-Bell-Scarf Theorem on the existence of integer solutions to systems of linear inequalities. Their generalization examines the number of facets of a polyhedron that contains exactly k integer points in Rn. They show that there exists a number c(n,k) such that any polyhedron in Rn that contains exactly k integer points has a relaxation to at most c(n,k) of its inequalities that will define a new polyhedron with the same integer points. They prove that c(n,k)=O(k2n). In this paper, we improve the bound asymptotically to be sublinear in k. We also provide lower bounds on c(n,k), along with other structural results. For dimension n=2, our bounds are asymptotically tight to within a constant.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/1812
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1512.07126
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherOptimization and Controleng
dc.titleSublinear bounds for a quantitative Doignon-Bell-Scarf Theoremeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections