Improving Deep Learning-based Plant Disease Classification with Attention Mechanism

dc.bibliographicCitation.date2023
dc.bibliographicCitation.firstPage49
dc.bibliographicCitation.journalTitleGesunde Pflanzeneng
dc.bibliographicCitation.lastPage59
dc.bibliographicCitation.volume75
dc.contributor.authorAlirezazadeh, Pendar
dc.contributor.authorSchirrmann, Michael
dc.contributor.authorStolzenburg, Frieder
dc.date.accessioned2023-02-06T10:22:45Z
dc.date.available2023-02-06T10:22:45Z
dc.date.issued2022
dc.description.abstractIn recent years, deep learning-based plant disease classification has been widely developed. However, it is challenging to collect sufficient annotated image data to effectively train deep learning models for plant disease recognition. The attention mechanism in deep learning assists the model to focus on the informative data segments and extract the discriminative features of inputs to enhance training performance. This paper investigates the Convolutional Block Attention Module (CBAM) to improve classification with CNNs, which is a lightweight attention module that can be plugged into any CNN architecture with negligible overhead. Specifically, CBAM is applied to the output feature map of CNNs to highlight important local regions and extract more discriminative features. Well-known CNN models (i.e. EfficientNetB0, MobileNetV2, ResNet50, InceptionV3, and VGG19) were applied to do transfer learning for plant disease classification and then fine-tuned by a publicly available plant disease dataset of foliar diseases in pear trees called DiaMOS Plant. Amongst others, this dataset contains 3006 images of leaves affected by different stress symptoms. Among the tested CNNs, EfficientNetB0 has shown the best performance. EfficientNetB0+CBAM has outperformed EfficientNetB0 and obtained 86.89% classification accuracy. Experimental results show the effectiveness of the attention mechanism to improve the recognition accuracy of pre-trained CNNs when there are few training data.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11277
dc.identifier.urihttp://dx.doi.org/10.34657/10313
dc.language.isoeng
dc.publisherBerlin ; Heidelberg : Springer
dc.relation.doihttps://doi.org/10.1007/s10343-022-00796-y
dc.relation.essn1439-0345
dc.relation.issn0367-4223
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc630
dc.subject.ddc640
dc.subject.ddc580
dc.subject.ddc333.7
dc.subject.otherAttention mechanismeng
dc.subject.otherCBAMeng
dc.subject.otherData limitationeng
dc.subject.otherDeep learningeng
dc.subject.otherPlant disease classificationeng
dc.subject.otherKlassifizierung von Pflanzenkrankheitenger
dc.subject.otherDeep Transfer Learningger
dc.subject.otherAttention-Mechanismusger
dc.subject.otherCBAMger
dc.subject.otherDatenlimitierungger
dc.titleImproving Deep Learning-based Plant Disease Classification with Attention Mechanismeng
dc.titleOptimierung der auf Deep Learning basierenden Klassifizierung von Pflanzenkrankheiten mit CBAMger
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorATB
wgl.subjectBiowissenschaften/Biologieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s10343-022-00796-y.pdf
Size:
938 KB
Format:
Adobe Portable Document Format
Description: