Statistics meets Machine Learning

dc.bibliographicCitation.firstPage231
dc.bibliographicCitation.lastPage272
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume4
dc.contributor.otherDümbgen, Lutz
dc.contributor.otherMüller, Klaus-Robert
dc.contributor.otherSamworth, Richard
dc.date.accessioned2023-12-15T10:27:42Z
dc.date.available2023-12-15T10:27:42Z
dc.date.issued2020
dc.description.abstractTheory and application go hand in hand in most areas of statistics. In a world flooded with huge amounts of data waiting to be analyzed, classified and transformed into useful outputs, the designing of fast, robust and stable algorithms has never been as important as it is today. On the other hand, irrespective of whether the focus is put on estimation, prediction, classification or other purposes, it is equally crucial to provide clear guarantees that such algorithms have strong theoretical guarantees. Many statisticians, independently of their original research interests, have become increasingly aware of the importance of the numerical needs faced in numerous applications including gene expression profiling, health care, pattern and speech recognition, data security, marketing personalization, natural language processing, to name just a few. The goal of this workshop is twofold: (a) exchange knowledge on successful algorithmic approaches and discuss some of the existing challenges, and (b) to bring together researchers in statistics and machine learning with the aim of sharing expertise and exploiting possible differences in points of views to obtain a better understanding of some of the common important problems.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13491
dc.identifier.urihttps://doi.org/10.34657/12521
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2020-4
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleStatistics meets Machine Learningeng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Statistics meets Machine Learning, 26 Jan - 01 Feb 2020, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2020_04.pdf
Size:
472.44 KB
Format:
Adobe Portable Document Format
Description: