Mathematical and Algorithmic Aspects of Data Assimilation in the Geosciences

dc.bibliographicCitation.firstPage2705
dc.bibliographicCitation.lastPage2748
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume47
dc.contributor.otherReich, Sebastian
dc.contributor.otherRoulstone, Ian
dc.contributor.otherStuart, Andrew
dc.date.accessioned2023-12-15T09:35:13Z
dc.date.available2023-12-15T09:35:13Z
dc.date.issued2016
dc.description.abstractThe field of “Data Assimilation” has been driven by applications from the geosciences where complex mathematical models are interfaced with observational data in order to improve model forecasts. Mathematically, data assimilation is closely related to filtering and smoothing on the one hand and inverse problems and statistical inference on the other. Key challenges of data assimilation arise from the high-dimensionality of the underlying models, combined with systematic spatio-temporal model errors, pure model uncertainty quantification and relatively sparse observation networks. Advances in the field of data assimilation will require combination of a broad range of mathematical techniques from differential equations, statistics, machine learning, probability, scientific computing and mathematical modeling, together with insights from practitioners in the field. The workshop brought together a collection of scientists representing this broad spectrum of research strands.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13265
dc.identifier.urihttps://doi.org/10.34657/12295
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2016-47
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleMathematical and Algorithmic Aspects of Data Assimilation in the Geoscienceseng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Mathematical and Algorithmic Aspects of Data Assimilation in the Geosciences, 02 Oct - 08 Oct 2016, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2016_47.pdf
Size:
341.9 KB
Format:
Adobe Portable Document Format
Description: