Solving inverse problems with Bayes' theorem

dc.bibliographicCitation.seriesTitleSnapshots of Modern Mathematics from Oberwolfacheng
dc.bibliographicCitation.volume6/2022
dc.contributor.authorLatz, Jonas
dc.contributor.authorSprungk, Björn
dc.date.accessioned2024-10-16T13:55:09Z
dc.date.available2024-10-16T13:55:09Z
dc.date.issued2022
dc.description.abstractThe goal of inverse problems is to find an unknown parameter based on noisy data. Such problems appear in a wide range of applications including geophysics, medicine, and chemistry. One method of solving them is known as the Bayesian approach. In this approach, the unknown parameter is modelled as a random variable to reflect its uncertain value. Bayes' theorem is applied to update our knowledge given new information from noisy data.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16852
dc.identifier.urihttps://doi.org/10.34657/15874
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH
dc.relation.doihttps://doi.org/10.14760/SNAP-2022-006-EN
dc.relation.essn2626-1995
dc.rights.licenseCC BY-SA 4.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.ddc510
dc.subject.otherNumerics and Scientific Computing
dc.subject.otherProbability Theory and Statistics
dc.titleSolving inverse problems with Bayes' theorem
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
snapshot-2022-006.pdf
Size:
459.61 KB
Format:
Adobe Portable Document Format
Description: