Statistical Inference for Complex Time Series Data

dc.bibliographicCitation.firstPage2749
dc.bibliographicCitation.lastPage2823
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume48
dc.contributor.otherLinton, Oliver
dc.contributor.otherWu, Wei-Biao
dc.contributor.otherYao, Qiwei
dc.date.accessioned2023-12-15T09:23:33Z
dc.date.available2023-12-15T09:23:33Z
dc.date.issued2013
dc.description.abstractDuring recent years the focus of scientific interest has turned from low dimensional stationary time series to nonstationary time series and high dimensional time series. In addition new methodological challenges are coming from high frequency finance where data are recorded and analyzed on a millisecond basis. The three topics “nonstationarity”, “high dimensionality” and “high frequency” are on the forefront of present research in time series analysis. The topics also have some overlap in that there already exists work on the intersection of these three topics, e.g. on locally stationary diffusion models, on high dimensional covariance matrices for high frequency data, or on multivariate dynamic factor models for nonstationary processes. The aim of the workshop was to bring together researchers from time series analysis, nonparametric statistics, econometrics and empirical finance to work on these topics. This aim was successfully achieved and the workshops was very well attended.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13125
dc.identifier.urihttps://doi.org/10.34657/12155
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2013-48
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleStatistical Inference for Complex Time Series Dataeng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Statistical Inference for Complex Time Series Data, 22 Sep - 28 Sep 2013, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2013_48.pdf
Size:
862.86 KB
Format:
Adobe Portable Document Format
Description: