On generalizations of Kac-Moody groups

Loading...
Thumbnail Image
Date
2010
Volume
2010-06
Issue
Journal
Series Titel
Oberwolfach Preprints (OWP)
Book Title
Publisher
Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach
Link to publishers version
Abstract

In [7] we define a Curtis-Tits group as a certain generalization of a Kac-Moody group. We distinguish between orientable and non-orientable Curtis-Tits groups and identify all orientable Curtis-Tits groups as Kac-Moody groups associated to twinbuildings. We mention that non-orientable Curtis-Tits groups exist. In the present paper we construct families of orientable and non-orientable Curtis-Tits groups. The resulting groups are quite interesting in their own right. The orientable ones are related to Drinfel’d’ s construction of vector bundles over a non-commutative projective line and to the classical groups over cyclic algebras. The non-orientable ones are related to q-CCR algebras in physics and have symplectic, orthogonal and unitary groups as quotients.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.