Noncommutative marked surfaces

Loading...
Thumbnail Image

Date

Volume

2015-16

Issue

Journal

Series Titel

Oberwolfach Preprints (OWP)

Book Title

Publisher

Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach

Link to publishers version

Abstract

The aim of the paper is to attach a noncommutative cluster-like structure to each marked surface . This is a noncommutative algebra A generated by “noncommutative geodesics” between marked points subject to certain triangle relations and noncommutative analogues of Ptolemy-Pl¨ucker relations. It turns out that the algebra A exhibits a noncommutative Laurent Phenomenon with respect to any triangulation of , which confirms its “cluster nature”. As a surprising byproduct, we obtain a new topological invariant of , which is a free or a 1-relator group easily computable in terms of any triangulation of . Another application is the proof of Laurentness and positivity of certain discrete noncommutative integrable systems.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.