Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features

dc.bibliographicCitation.firstPage506eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.journalTitleBiomaterials Scienceeng
dc.bibliographicCitation.volume8eng
dc.contributor.authorMora-Boza, A.
dc.contributor.authorWłodarczyk-Biegun, M.K.
dc.contributor.authorDel Campo, A.
dc.contributor.authorVázquez-Lasa, B.
dc.contributor.authorRomán, J.S.
dc.date.accessioned2020-07-24T06:49:30Z
dc.date.available2020-07-24T06:49:30Z
dc.date.issued2020
dc.description.abstractThe fabrication of intricate and long-term stable 3D polymeric scaffolds by a 3D printing technique is still a challenge. In the biomedical field, hydrogel materials are very frequently used because of their excellent biocompatibility and biodegradability, however the improvement of their processability and mechanical properties is still required. This paper reports the fabrication of dual crosslinked 3D scaffolds using a low concentrated (<10 wt%) ink of gelatin methacryloyl (GelMA)/chitosan and a novel crosslinking agent, glycerylphytate (G1Phy) to overcome the current limitations in the 3D printing field using hydrogels. The applied methodology consisted of a first ultraviolet light (UV) photopolymerization followed by a post-printing ionic crosslinking treatment with G1Phy. This crosslinker provides a robust framework and avoids the necessity of neutralization with strong bases. The blend ink showed shear-thinning behavior and excellent printability in the form of a straight and homogeneous filament. UV curing was undertaken simultaneously to 3D deposition, which enhanced precision and shape fidelity (resolution ≈150 μm), and prevented the collapse of the subsequent printed layers (up to 28 layers). In the second step, the novel G1Phy ionic crosslinker agent provided swelling and long term stability properties to the 3D scaffolds. The multi-layered printed scaffolds were mechanically stable under physiological conditions for at least one month. Preliminary in vitro assays using L929 fibroblasts showed very promising results in terms of adhesion, spreading, and proliferation in comparison to other phosphate-based traditional crosslinkers (i.e. TPP). We envision that the proposed combination of the blend ink and 3D printing approach can have widespread applications in the regeneration of soft tissues.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3715
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5086
dc.language.isoengeng
dc.publisherLondon : Royal Society of Chemistryeng
dc.relation.doihttps://doi.org/10.1039/c9bm01271k
dc.relation.issn2047-4830
dc.rights.licenseCC BY-NC 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/eng
dc.subject.ddc570eng
dc.subject.otherBiocompatibilityeng
dc.subject.otherBiodegradabilityeng
dc.subject.otherCell cultureeng
dc.subject.otherCuringeng
dc.subject.otherHydrogelseng
dc.subject.otherPhotopolymerizationeng
dc.subject.otherScaffolds (biology)eng
dc.subject.otherShear thinningeng
dc.subject.otherStabilityeng
dc.subject.otherSwellingeng
dc.subject.otherTissue regenerationeng
dc.subject.otherBiological featureseng
dc.subject.otherCurrent limitationeng
dc.subject.otherLong term stabilityeng
dc.subject.otherMechanically stableeng
dc.subject.otherPhysiological conditioneng
dc.subject.otherPolymeric scaffoldeng
dc.subject.otherShear-thinning behavioreng
dc.subject.otherUltraviolet lightseng
dc.subject.other3D printerseng
dc.subject.otherchitosaneng
dc.subject.othergelatineng
dc.subject.otherglycerylphytateeng
dc.subject.otherphytateeng
dc.subject.otherunclassified drugeng
dc.subject.othercross linking reagenteng
dc.subject.othermethacrylic acideng
dc.subject.otherArticleeng
dc.subject.otherbiocompatibilityeng
dc.subject.othercell proliferationeng
dc.subject.othercell viabilityeng
dc.subject.otherchemical compositioneng
dc.subject.otherchemical structureeng
dc.subject.othercontrolled studyeng
dc.subject.othercross linkingeng
dc.subject.otherdeacetylationeng
dc.subject.otherdegradation kineticseng
dc.subject.otherfibroblasteng
dc.subject.otherimmunochemistryeng
dc.subject.otherin vitro studyeng
dc.subject.othernuclear magnetic resonanceeng
dc.subject.otherphysical chemistryeng
dc.subject.otherpolymerizationeng
dc.subject.otherpriority journaleng
dc.subject.otherthree dimensional printingeng
dc.subject.otherultraviolet radiationeng
dc.subject.otheranimaleng
dc.subject.otherbioprintingeng
dc.subject.othercell lineeng
dc.subject.othercell survivaleng
dc.subject.otherchemistryeng
dc.subject.othercytologyeng
dc.subject.otherdrug effecteng
dc.subject.otherhydrogeleng
dc.subject.othermouseeng
dc.subject.otherthree dimensional printingeng
dc.subject.othertissue engineeringeng
dc.subject.othertissue scaffoldeng
dc.subject.otherAnimalseng
dc.subject.otherBioprintingeng
dc.subject.otherCell Lineeng
dc.subject.otherCell Survivaleng
dc.subject.otherChitosaneng
dc.subject.otherCross-Linking Reagentseng
dc.subject.otherFibroblastseng
dc.subject.otherHydrogelseng
dc.subject.otherMethacrylateseng
dc.subject.otherMiceeng
dc.subject.otherPrinting, Three-Dimensionaleng
dc.subject.otherTissue Engineeringeng
dc.subject.otherTissue Scaffoldseng
dc.titleGlycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological featureseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorINMeng
wgl.subjectBiowissenschaften/Biologieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mora-Boza et al 2020, Glycerylphytate as an ionic crosslinker for 3D.pdf
Size:
3 MB
Format:
Adobe Portable Document Format
Description: