Deep Learning for Inverse Problems (hybrid meeting)

dc.bibliographicCitation.firstPage745
dc.bibliographicCitation.lastPage789
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume13
dc.contributor.otherMaaß, Peter
dc.contributor.otherSchönlieb, Carola-Bibiane
dc.date.accessioned2023-12-15T10:27:43Z
dc.date.available2023-12-15T10:27:43Z
dc.date.issued2021
dc.description.abstractMachine learning and in particular deep learning offer several data-driven methods to amend the typical shortcomings of purely analytical approaches. The mathematical research on these combined models is presently exploding on the experimental side but still lacking on the theoretical point of view. This workshop addresses the challenge of developing a solid mathematical theory for analyzing deep neural networks for inverse problems.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13496
dc.identifier.urihttps://doi.org/10.34657/12526
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2021-13
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleDeep Learning for Inverse Problems (hybrid meeting)eng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Deep Learning for Inverse Problems (hybrid meeting), 07 Mar - 13 Mar 2021, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2021_13.pdf
Size:
4.59 MB
Format:
Adobe Portable Document Format
Description: