Topological Recursion and TQFTs
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
The topological recursion is an ubiquitous structure in enumerative geometry of surfaces and topological quantum field theories. Since its invention in the context of matrix models, it has been found or conjectured to compute intersection numbers in the moduli space of curves, topological string amplitudes, asymptotics of knot invariants, and more generally semiclassical expansion in topological quantum field theories. This workshop brought together mathematicians and theoretical physicists with various background to understand better the underlying geometry, learn about recent advances (notably on quantisation of spectral curves, topological strings and quantum gauge theories, and geometry of moduli spaces) and discuss the hot topics in the area.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.