Getzler rescaling via adiabatic deformation and a renormalized local index formula

Loading...
Thumbnail Image
Date
2016
Volume
2016-18
Issue
Journal
Series Titel
Oberwolfach Preprints (OWP)
Book Title
Publisher
Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach
Link to publishers version
Abstract

We prove a local index theorem of Atiyah-Singer type for Dirac oper- ators on manifolds with a Lie structure at infinity (Lie manifolds for short). After introducing a renormalized supertrace on Lie manifolds with spin structure, defined on a suitable class of rapidly decaying functions, the proof of the index theorem relies on a rescaling technique similar in spirit to Getzler's rescaling. With a given Lie manifold we associate an appropriate integrating Lie groupoid. We then describe the heat kernel of a geometric Dirac operator via a functional calculus with values in the convolution algebra of sections of the rescaled bundle over the adiabatic groupoid and introduce a rescaling of the heat kernel encoded in a vector bundle over the adiabatic groupoid. Finally, we calculate the right coefficient in the heat kernel expansion using the Lichnerowicz theorem on the fibers of the groupoid and the Lie manifold.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.