Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2007-12 | |
dc.contributor.author | Trofimchuk, Elena | |
dc.contributor.author | Tkachenko, Victor | |
dc.contributor.author | Trofimchuk, Sergei | |
dc.date.available | 2019-06-28T08:02:10Z | |
dc.date.issued | 2007 | |
dc.description.abstract | We study positive bounded wave solutions u(t,x)=ϕ(ν⋅x+ct), ϕ(−∞)=0, of equation ut(t,x)=δu(t,x)−u(t,x)+g(u(t−h,x)), x∈Rm(*). It is supposed that Eq. (∗) has exactly two non-negative equilibria: u1≡0 and u2≡κ>9. The birth function g∈C(R+,R+) satisfies a few mild conditions: it is unimodal and differentiable at 0,κ. Some results also require the positive feedback of g:[g(maxg),maxg]→R+ with respect to κ. If additionally ϕ(+∞)=κ, the above wave solution u(t,x) is called a travelling front. We prove that every wave ϕ(ν⋅x+ct) is eventually monotone or slowly oscillating about κ. Furthermore, we indicate c∗∈R+∪+∞ such that (∗) does not have any travelling front (neither monotone nor non-monotone) propagating at velocity c>c∗. Our results are based on a detailed geometric description of the wave profile ϕ. In particular, the monotonicity of its leading edge is established. We also discuss the uniqueness problem indicating a subclass G of ’asymmetric’ tent maps such that given g∈G, there exists exactly one travelling front for each fixed admissible speed. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/3181 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/1750 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | eng |
dc.relation.doi | https://doi.org/10.14760/OWP-2007-12 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Time-delayed reaction-diffusion equation | eng |
dc.subject.other | slow oscillations | eng |
dc.subject.other | small solution | eng |
dc.subject.other | semi-wavefront | eng |
dc.subject.other | travelling front | eng |
dc.subject.other | single species population model | eng |
dc.title | Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2007_12.pdf
- Size:
- 309.3 KB
- Format:
- Adobe Portable Document Format
- Description: