Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2007-12
dc.contributor.authorTrofimchuk, Elena
dc.contributor.authorTkachenko, Victor
dc.contributor.authorTrofimchuk, Sergei
dc.date.available2019-06-28T08:02:10Z
dc.date.issued2007
dc.description.abstractWe study positive bounded wave solutions u(t,x)=ϕ(ν⋅x+ct), ϕ(−∞)=0, of equation ut(t,x)=δu(t,x)−u(t,x)+g(u(t−h,x)), x∈Rm(*). It is supposed that Eq. (∗) has exactly two non-negative equilibria: u1≡0 and u2≡κ>9. The birth function g∈C(R+,R+) satisfies a few mild conditions: it is unimodal and differentiable at 0,κ. Some results also require the positive feedback of g:[g(maxg),maxg]→R+ with respect to κ. If additionally ϕ(+∞)=κ, the above wave solution u(t,x) is called a travelling front. We prove that every wave ϕ(ν⋅x+ct) is eventually monotone or slowly oscillating about κ. Furthermore, we indicate c∗∈R+∪+∞ such that (∗) does not have any travelling front (neither monotone nor non-monotone) propagating at velocity c>c∗. Our results are based on a detailed geometric description of the wave profile ϕ. In particular, the monotonicity of its leading edge is established. We also discuss the uniqueness problem indicating a subclass G of ’asymmetric’ tent maps such that given g∈G, there exists exactly one travelling front for each fixed admissible speed.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3181
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/1750
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2007-12
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherTime-delayed reaction-diffusion equationeng
dc.subject.otherslow oscillationseng
dc.subject.othersmall solutioneng
dc.subject.othersemi-wavefronteng
dc.subject.othertravelling fronteng
dc.subject.othersingle species population modeleng
dc.titleSlowly oscillating wave solutions of a single species reaction-diffusion equation with delayeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2007_12.pdf
Size:
309.3 KB
Format:
Adobe Portable Document Format
Description: