Noncompact harmonic manifolds

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2013-08
dc.contributor.authorKnieper, Gerhard
dc.contributor.authorPeyerimhoff, Norbert
dc.date.available2019-06-28T08:24:31Z
dc.date.issued2013
dc.description.abstractThe Lichnerowicz conjecture asserts that all harmonic manifolds are either flat or locally symmetric spaces of rank 1. This conjecture has been proved by Z.I. Szab´o [Sz] for harmonic manifolds with compact universal cover. E. Damek and F. Ricci [DR] provided examples showing that in the noncompact case the conjecture is wrong. However, such manifolds do not admit a compact quotient. The classification of all noncompact harmonic spaces is still a very difficult open problem. In this paper we provide a survey on recent results on noncompact simply connected harmonic manifolds, and we also prove many new results, both for general noncompact harmonic manifolds and for noncompact harmonic manifolds with purely exponential volume growth.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/2750
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3410
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2013-08
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherHarmonic manifoldseng
dc.subject.othergeodesic flowseng
dc.subject.otherLichnerowicz conjectureeng
dc.titleNoncompact harmonic manifoldseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2013_08.pdf
Size:
651.61 KB
Format:
Adobe Portable Document Format
Description: