Group-Graded Rings Satisfying the Strong Rank Condition

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume22
dc.contributor.authorKropholler, Peter H.
dc.contributor.authorLorensen, Karl
dc.date.accessioned2024-10-16T16:43:28Z
dc.date.available2024-10-16T16:43:28Z
dc.date.issued2019
dc.description.abstractA ring R satisfies the strong rank condition (SRC) if, for every natural number n, the free R-submodules of Rⁿ all have rank ≤n. Let G be a group and R a ring strongly graded by G such that the base ring R₁ is a domain. Using an argument originated by Laurent Bartholdi for studying cellular automata, we prove that R satisfies SRC if and only if R₁ satisfies SRC and G is amenable. The special case of this result for group rings allows us to prove a characterization of amenability involving the group von Neumann algebra that was conjectured by Wolfgang Lück. In addition, we include two applications to the study of group rings and their modules.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16914
dc.identifier.urihttps://doi.org/10.34657/15936
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2019-22
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.otherGroup-graded ring
dc.subject.otherStrong rank
dc.subject.otherAmenable group
dc.titleGroup-Graded Rings Satisfying the Strong Rank Condition
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2019_22.pdf
Size:
411.25 KB
Format:
Adobe Portable Document Format
Description: