Group-Graded Rings Satisfying the Strong Rank Condition
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | |
dc.bibliographicCitation.volume | 22 | |
dc.contributor.author | Kropholler, Peter H. | |
dc.contributor.author | Lorensen, Karl | |
dc.date.accessioned | 2024-10-16T16:43:28Z | |
dc.date.available | 2024-10-16T16:43:28Z | |
dc.date.issued | 2019 | |
dc.description.abstract | A ring R satisfies the strong rank condition (SRC) if, for every natural number n, the free R-submodules of Rⁿ all have rank ≤n. Let G be a group and R a ring strongly graded by G such that the base ring R₁ is a domain. Using an argument originated by Laurent Bartholdi for studying cellular automata, we prove that R satisfies SRC if and only if R₁ satisfies SRC and G is amenable. The special case of this result for group rings allows us to prove a characterization of amenability involving the group von Neumann algebra that was conjectured by Wolfgang Lück. In addition, we include two applications to the study of group rings and their modules. | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/16914 | |
dc.identifier.uri | https://doi.org/10.34657/15936 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWP-2019-22 | |
dc.relation.issn | 1864-7596 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | |
dc.subject.ddc | 510 | |
dc.subject.other | Group-graded ring | |
dc.subject.other | Strong rank | |
dc.subject.other | Amenable group | |
dc.title | Group-Graded Rings Satisfying the Strong Rank Condition | |
dc.type | Report | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2019_22.pdf
- Size:
- 411.25 KB
- Format:
- Adobe Portable Document Format
- Description: