A note on k[z]-automorphisms in two variables
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2008-17 | |
dc.contributor.author | Edo, Eric | |
dc.contributor.author | van den Essen, Arno | |
dc.contributor.author | Maubach, Stefan | |
dc.date.available | 2019-06-28T08:09:27Z | |
dc.date.issued | 2008 | |
dc.description.abstract | We prove that for a polynomial f 2 k[x, y, z] equivalent are: (1)f is a k[z]-coordinate of k[z][x, y], and (2) k[x, y, z]/(f) = k[2] and f(x, y, a) is a coordinate in k[x, y] for some a 2 k. This solves a special case of the Abhyankar-Sathaye conjecture. As a consequence we see that a coordinate f 2 k[x, y, z] which is also a k(z)-coordinate, is a [z]-coordinate. We discuss a method for onstructing automorphisms of k[x, y, z], and observe that the Nagata automorphism occurs naturally as the first non-trivial automorphism obtained by this method essentially linking Nagata with a non-tame R-automorphism of R[x], where R = k[z]/(z2). | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/1876 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2651 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | eng |
dc.relation.doi | https://doi.org/10.14760/OWP-2008-17 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.title | A note on k[z]-automorphisms in two variables | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2008_17.pdf
- Size:
- 168.79 KB
- Format:
- Adobe Portable Document Format
- Description: