A note on k[z]-automorphisms in two variables

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2008-17
dc.contributor.authorEdo, Eric
dc.contributor.authorvan den Essen, Arno
dc.contributor.authorMaubach, Stefan
dc.date.available2019-06-28T08:09:27Z
dc.date.issued2008
dc.description.abstractWe prove that for a polynomial f 2 k[x, y, z] equivalent are: (1)f is a k[z]-coordinate of k[z][x, y], and (2) k[x, y, z]/(f) = k[2] and f(x, y, a) is a coordinate in k[x, y] for some a 2 k. This solves a special case of the Abhyankar-Sathaye conjecture. As a consequence we see that a coordinate f 2 k[x, y, z] which is also a k(z)-coordinate, is a [z]-coordinate. We discuss a method for onstructing automorphisms of k[x, y, z], and observe that the Nagata automorphism occurs naturally as the first non-trivial automorphism obtained by this method essentially linking Nagata with a non-tame R-automorphism of R[x], where R = k[z]/(z2).eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/1876
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2651
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2008-17
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleA note on k[z]-automorphisms in two variableseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2008_17.pdf
Size:
168.79 KB
Format:
Adobe Portable Document Format
Description: