Stein’s method for dependent random variables occuring in statistical mechanics

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2009-09
dc.contributor.authorEichelsbacher, Peter
dc.contributor.authorLöwe, Matthias
dc.date.available2019-06-28T08:09:06Z
dc.date.issued2009
dc.description.abstractWe obtain rates of convergence in limit theorems of partial sums Sn for certain sequences of dependent, identically distributed random variables, which arise naturally in statistical mechanics, in particular, in the context of the Curie-Weiss models. Under appropriate assumptions there exists a real number α, a positive number μ, and a positive integer k such that (Sn−nα)/n1−1/2k converges weakly to a random variable with density proportional to exp(−μ|x|2k/(2k)!). We develop Stein's method for exchangeable pairs for a rich class of distributional approximations including the Gaussian distributions as well as the non-Gaussian limit distributions with density proportional to exp(−μ|x|2k/(2k)!). Our results include the optimal Berry-Esseen rate in the Central Limit Theorem for the total magnetization in the classical Curie-Weiss model, for high temperatures as well as at the critical temperature βc=1, where the Central Limit Theorem fails. Moreover, we analyze Berry-Esseen bounds as the temperature 1/βn converges to one and obtain a threshold for the speed of this convergence. Single spin distributions satisfying the Griffiths-Hurst-Sherman (GHS)inequality like models of liquid helium or continuous Curie-Weiss models are considered.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3277
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2627
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2009-09
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherBerry-Esseen boundeng
dc.subject.otherStein's methodeng
dc.subject.otherexchangeable pairseng
dc.subject.otherCurie-Weiss modelseng
dc.subject.othercritical temperatureeng
dc.subject.otherGHS-inequalityeng
dc.titleStein’s method for dependent random variables occuring in statistical mechanicseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2009_09.pdf
Size:
353.33 KB
Format:
Adobe Portable Document Format
Description: