Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: A multi-model analysis with a new set of land-cover change scenarios

dc.bibliographicCitation.firstPage1455eng
dc.bibliographicCitation.issue3eng
dc.bibliographicCitation.journalTitleHydrology and Earth System Scienceseng
dc.bibliographicCitation.volume21eng
dc.contributor.authorGuimberteau, M.
dc.contributor.authorCiais, P.
dc.contributor.authorPablo, Boisier, J.
dc.contributor.authorPaula Dutra Aguiar, A.
dc.contributor.authorBiemans, H.
dc.contributor.authorDe Deurwaerder, H.
dc.contributor.authorGalbraith, D.
dc.contributor.authorKruijt, B.
dc.contributor.authorLangerwisch, F.
dc.contributor.authorPoveda, G.
dc.contributor.authorRammig, A.
dc.contributor.authorAndres Rodriguez, D.
dc.contributor.authorTejada, G.
dc.contributor.authorThonicke, K.
dc.contributor.authorVon, Randow, C.
dc.contributor.authorRandow, R.
dc.contributor.authorZhang, K.
dc.contributor.authorVerbeeck, H.
dc.date.accessioned2020-07-27T12:26:35Z
dc.date.available2020-07-27T12:26:35Z
dc.date.issued2017
dc.description.abstractDeforestation in Amazon is expected to decrease evapotranspiration (ET) and to increase soil moisture and river discharge under prevailing energy-limited conditions. The magnitude and sign of the response of ET to deforestation depend both on the magnitude and regional patterns of land-cover change (LCC), as well as on climate change and CO2 levels. On the one hand, elevated CO2 decreases leaf-scale transpiration, but this effect could be offset by increased foliar area density. Using three regional LCC scenarios specifically established for the Brazilian and Bolivian Amazon, we investigate the impacts of climate change and deforestation on the surface hydrology of the Amazon Basin for this century, taking 2009 as a reference. For each LCC scenario, three land surface models (LSMs), LPJmL-DGVM, INLAND-DGVM and ORCHIDEE, are forced by bias-corrected climate simulated by three general circulation models (GCMs) of the IPCC 4th Assessment Report (AR4). On average, over the Amazon Basin with no deforestation, the GCM results indicate a temperature increase of 3.3ĝ€°C by 2100 which drives up the evaporative demand, whereby precipitation increases by 8.5 %, with a large uncertainty across GCMs. In the case of no deforestation, we found that ET and runoff increase by 5.0 and 14ĝ€%, respectively. However, in south-east Amazonia, precipitation decreases by 10ĝ€% at the end of the dry season and the three LSMs produce a 6ĝ€% decrease of ET, which is less than precipitation, so that runoff decreases by 22 %. For instance, the minimum river discharge of the Rio Tapajós is reduced by 31ĝ€% in 2100. To study the additional effect of deforestation, we prescribed to the LSMs three contrasted LCC scenarios, with a forest decline going from 7 to 34ĝ€% over this century. All three scenarios partly offset the climate-induced increase of ET, and runoff increases over the entire Amazon. In the south-east, however, deforestation amplifies the decrease of ET at the end of dry season, leading to a large increase of runoff (up to +27ĝ€% in the extreme deforestation case), offsetting the negative effect of climate change, thus balancing the decrease of low flows in the Rio Tapajós. These projections are associated with large uncertainties, which we attribute separately to the differences in LSMs, GCMs and to the uncertain range of deforestation. At the subcatchment scale, the uncertainty range on ET changes is shown to first depend on GCMs, while the uncertainty of runoff projections is predominantly induced by LSM structural differences. By contrast, we found that the uncertainty in both ET and runoff changes attributable to uncertain future deforestation is low.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5156
dc.identifier.urihttps://doi.org/10.34657/3785
dc.language.isoengeng
dc.publisherGöttingen : Copernicus GmbHeng
dc.relation.doihttps://doi.org/10.5194/hess-21-1455-2017
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subject.ddc550eng
dc.subject.otherCarbon dioxideeng
dc.subject.otherClimate modelseng
dc.subject.otherDeforestationeng
dc.subject.otherDroughteng
dc.subject.otherEvapotranspirationeng
dc.subject.otherHydrologyeng
dc.subject.otherRunoffeng
dc.subject.otherSoil moistureeng
dc.subject.otherEvaporative demandseng
dc.subject.otherGeneral circulation modeleng
dc.subject.otherLand surface modelseng
dc.subject.otherLand-cover changeeng
dc.subject.otherRunoff projectionseng
dc.subject.otherStructural differenceseng
dc.subject.otherSurface hydrologyeng
dc.subject.otherTemperature increaseeng
dc.subject.otherClimate changeeng
dc.subject.otherclimate changeeng
dc.subject.otherclimate effecteng
dc.subject.otherdeforestationeng
dc.subject.otherevapotranspirationeng
dc.subject.otherfuture prospecteng
dc.subject.otherhydrologyeng
dc.subject.otherland covereng
dc.subject.otherland surfaceeng
dc.subject.otherprecipitation (climatology)eng
dc.subject.otherregional patterneng
dc.subject.otherriver dischargeeng
dc.subject.otherrunoffeng
dc.subject.otherscenario analysiseng
dc.subject.otherAmazon Basineng
dc.subject.otherAmazoniaeng
dc.subject.otherBoliviaeng
dc.subject.otherBrazileng
dc.subject.otherTapajos Rivereng
dc.titleImpacts of future deforestation and climate change on the hydrology of the Amazon Basin: A multi-model analysis with a new set of land-cover change scenarioseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPIKeng
wgl.subjectUmweltwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Guimberteau et al 2017, Impacts of future deforestation and climate change on the hydrology.pdf
Size:
11.01 MB
Format:
Adobe Portable Document Format
Description: