Logical Relations for Partial Features and Automatic Differentiation Correctness

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume9
dc.contributor.authorLucatelli Nunes, Fernando
dc.contributor.authorVákár, Matthijs
dc.date.accessioned2024-10-17T05:47:44Z
dc.date.available2024-10-17T05:47:44Z
dc.date.issued2023
dc.description.abstractWe present a simple technique for semantic, open logical relations arguments about languages with recursive types, which, as we show, follows from a principled foundation in categorical semantics. We demonstrate how it can be used to give a very straightforward proof of correctness of practical forward- and reverse-mode dual numbers style automatic differentiation (AD) on ML-family languages. The key idea is to combine it with a suitable open logical relations technique for reasoning about differentiable partial functions (a suitable lifting of the partiality monad to logical relations), which we introduce.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16994
dc.identifier.urihttps://doi.org/10.34657/16016
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doi10.14760/OWP-2023-09
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subjectRecursive Types
dc.subjectLogical Relations
dc.subjectAutomatic differentiation
dc.subjectProgramming Languages
dc.subjectFunctional Programming
dc.subjectDenotational Semantics
dc.subjectRecursion
dc.subjectProgram Transformations
dc.subjectEnriched Category Theory
dc.subject.ddc510
dc.titleLogical Relations for Partial Features and Automatic Differentiation Correctness
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2023_09.pdf
Size:
592.94 KB
Format:
Adobe Portable Document Format
Description: