Statistical Inference for Structured High-dimensional Models

dc.bibliographicCitation.firstPage591
dc.bibliographicCitation.lastPage630
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume12
dc.contributor.otherTsybakov, Alexandre
dc.contributor.otherZhang, Cun-Hui
dc.date.accessioned2023-12-15T09:50:12Z
dc.date.available2023-12-15T09:50:12Z
dc.date.issued2018
dc.description.abstractHigh-dimensional statistical inference is a newly emerged direction of statistical science in the 21 century. Its importance is due to the increasing dimensionality and complexity of models needed to process and understand the modern real world data. The main idea making possible meaningful inference about such models is to assume suitable lower dimensional underlying structure or low-dimensional approximations, for which the error can be reasonably controlled. Several types of such structures have been recently introduced including sparse high-dimensional regression, sparse and/or low rank matrix models, matrix completion models, dictionary learning, network models (stochastic block model, mixed membership models) and more. The workshop focused on recent developments in structured sequence and regression models, matrix and tensor estimation, robustness, statistical learning in complex settings, network data, and topic models.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13343
dc.identifier.urihttps://doi.org/10.34657/12373
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2018-12
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleStatistical Inference for Structured High-dimensional Modelseng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Statistical Inference for Structured High-dimensional Models, 11 Mar - 17 Mar 2018, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2018_12.pdf
Size:
678.45 KB
Format:
Adobe Portable Document Format
Description: