A (k+1)-slope theorem for the k-dimensional infinite group relaxation

dc.contributor.authorBasu, Amitabh
dc.contributor.authorHildebrand, Robert
dc.contributor.authorKöppe, Matthias
dc.contributor.authorMolinaro, Marco
dc.date.accessioned2016-07-27T04:18:00Z
dc.date.available2019-06-28T08:17:48Z
dc.date.issued2011
dc.description.abstractWe prove that any minimal valid function for the k-dimensional infinite group relaxation that is piecewise linear with at most k+1 slopes and does not factor through a linear map with non-trivial kernel is extreme. This generalizes a theorem of Gomory and Johnson for k=1, and Cornuejols and Molinaro for k=2.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3142
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1109.4184
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherOptimization and Controleng
dc.titleA (k+1)-slope theorem for the k-dimensional infinite group relaxationeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections