Random Matrices

dc.bibliographicCitation.firstPage3459
dc.bibliographicCitation.lastPage3527
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume56
dc.contributor.otherGötze, Friedrich
dc.contributor.otherGuionnet, Alice
dc.date.accessioned2023-12-15T10:06:56Z
dc.date.available2023-12-15T10:06:56Z
dc.date.issued2019
dc.description.abstractLarge complex systems tend to develop universal patterns that often represent their essential characteristics. For example, the cumulative effects of independent or weakly dependent random variables often yield the Gaussian universality class via the central limit theorem. For non-commutative random variables, e.g. matrices, the Gaussian behavior is often replaced by another universality class, commonly called random matrix statistics. Nearby eigenvalues are strongly correlated, and, remarkably, their correlation structure is universal, depending only on the symmetry type of the matrix. Even more surprisingly, this feature is not restricted to matrices; in fact Eugene Wigner, the pioneer of the field, discovered in the 1950s that distributions of the gaps between energy levels of complicated quantum systems universally follow the same random matrix statistics. This claim has never been rigorously proved for any realistic physical system but experimental data and extensive numerics leave no doubt as to its correctness. Since then random matrices have proved to be extremely useful phenomenological models in a wide range of applications beyond quantum physics that include number theory, statistics, neuroscience, population dynamics, wireless communication and mathematical finance. The ubiquity of random matrices in natural sciences is still a mystery, but recent years have witnessed a breakthrough in the mathematical description of the statistical structure of their spectrum. Random matrices and closely related areas such as log-gases have become an extremely active research area in probability theory. This workshop brought together outstanding researchers from a variety of mathematical backgrounds whose areas of research are linked to random matrices. While there are strong links between their motivations, the techniques used by these researchers span a large swath of mathematics, ranging from purely algebraic techniques to stochastic analysis, classical probability theory, operator algebra, supersymmetry, orthogonal polynomials, etc.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13449
dc.identifier.urihttps://doi.org/10.34657/12479
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2019-56
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleRandom Matriceseng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Random Matrices, 08 Dec - 14 Dec 2019, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2019_56.pdf
Size:
606.06 KB
Format:
Adobe Portable Document Format
Description: