Conditioning of finite element equations with arbitrary anisotropic meshes

dc.contributor.authorKamenski, Lennard
dc.contributor.authorHuang, Weizhang
dc.contributor.authorXu, Hongguo
dc.date.accessioned2017-01-04T16:09:58Z
dc.date.available2019-06-28T08:03:43Z
dc.date.issued2012
dc.description.abstractBounds are developed for the condition number of the linear finite element equations of an anisotropic diffusion problem with arbitrary meshes. They depend on three factors. The first, factor proportional to a power of the number of mesh elements, represents the condition number of the linear finite element equations for the Laplacian operator on a uniform mesh. The other two factors arise from the mesh nonuniformity viewed in the Euclidean metric and in the metric defined by the diffusion matrix. The new bounds reveal that the conditioning of the finite element equations with adaptive anisotropic meshes is much better than what is commonly feared. Diagonal scaling for the linear system and its effects on the conditioning are also studied. It is shown that the Jacobi preconditioning, which is an optimal diagonal scaling for a symmetric positive definite sparse matrix, can eliminate the effects of mesh nonuniformity viewed in the Euclidean metric and reduce those effects of the mesh viewed in the metric defined by the diffusion matrix. Tight bounds on the extreme eigenvalues of the stiffness and mass matrices are obtained. Numerical examples are given.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2084
dc.language.isoengeng
dc.publisherProvidence : American Mathematical Societyeng
dc.relation.doihttps://doi.org/10.1090/S0025-5718-2014-02822-6
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherMesh adaptationeng
dc.subject.otheranisotropic mesheng
dc.subject.otherfinite elementeng
dc.subject.othermass matrixeng
dc.subject.otherstiffness matrixeng
dc.subject.otherconditioningeng
dc.subject.otherextreme eigenvalueseng
dc.subject.otherpreconditioningeng
dc.subject.otherdiagonal scalingeng
dc.titleConditioning of finite element equations with arbitrary anisotropic mesheseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections