Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions

dc.bibliographicCitation.firstPage124021eng
dc.bibliographicCitation.issue12eng
dc.bibliographicCitation.journalTitleEnvironmental research letters : ERLeng
dc.bibliographicCitation.volume15eng
dc.contributor.authorSingh, Chandrakant
dc.contributor.authorWang-Erlandsson, Lan
dc.contributor.authorFetzer, Ingo
dc.contributor.authorRockström, Johan
dc.contributor.authorvan der Ent, Ruud
dc.date.accessioned2022-08-16T05:32:52Z
dc.date.available2022-08-16T05:32:52Z
dc.date.issued2020
dc.description.abstractClimate change and deforestation have increased the risk of drought-induced forest-to-savanna transitions across the tropics and subtropics. However, the present understanding of forest-savanna transitions is generally focused on the influence of rainfall and fire regime changes, but does not take into account the adaptability of vegetation to droughts by utilizing subsoil moisture in a quantifiable metric. Using rootzone storage capacity (Sr), which is a novel metric to represent the vegetation's ability to utilize subsoil moisture storage and tree cover (TC), we analyze and quantify the occurrence of these forest-savanna transitions along transects in South America and Africa. We found forest-savanna transition thresholds to occur around a Sr of 550–750 mm for South America and 400–600 mm for Africa in the range of 30%–40% TC. Analysis of empirical and statistical patterns allowed us to classify the ecosystem's adaptability to droughts into four classes of drought coping strategies: lowly water-stressed forest (shallow roots, high TC), moderately water-stressed forest (investing in Sr, high TC), highly water-stressed forest (trade-off between investments in Sr and TC) and savanna-grassland regime (competitive rooting strategy, low TC). The insights from this study are useful for improved understanding of tropical eco-hydrological adaptation, drought coping strategies, and forest ecosystem regime shifts under future climate change.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10036
dc.identifier.urihttp://dx.doi.org/10.34657/9074
dc.language.isoengeng
dc.publisherBristol : IOP Publ.eng
dc.relation.doihttps://doi.org/10.1088/1748-9326/abc377
dc.relation.essn1748-9326
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc690eng
dc.subject.otherAmazoneng
dc.subject.otherCongoeng
dc.subject.otherecohydrologyeng
dc.subject.otherecosystem dynamicseng
dc.subject.otherremote sensingeng
dc.subject.othertransectseng
dc.subject.otherwater-stresseng
dc.titleRootzone storage capacity reveals drought coping strategies along rainforest-savanna transitionseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPIKeng
wgl.subjectUmweltwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rootzone_storage_capacity.pdf
Size:
3.73 MB
Format:
Adobe Portable Document Format
Description: