Real group orbits on ag ind-varieties of SL (∞;C)

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2016-01
dc.contributor.authorIgnatyev, Mikhail V.
dc.contributor.authorPenkov, Ivan
dc.contributor.authorWolf, Joseph A.
dc.date.available2019-06-28T08:15:57Z
dc.date.issued2016
dc.description.abstractWe consider the complex ind-group G=SL(∞,C) and its real forms G0=SU(∞,∞), SU(p,∞), SL(∞,R), SL(∞,H). Our main object of study are the G0-orbits on an ind-variety G/P for an arbitrary splitting parabolic ind-subgroup P⊂G, under the assumption that the subgroups G0⊂G and P⊂G are aligned in a natural way. We prove that the intersection of any G0-orbit on G/P with a finite-dimensional flag variety Gn/Pn from a given exhaustion of G/P via Gn/Pn for n→∞, is a single (G0∩Gn)-orbit. We also characterize all ind-varieties G/P on which there are finitely many G0-orbits, and provide criteria for the existence of open and close G0-orbits on G/P in the case of infinitely many G0-orbits.
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3070
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3050
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2016-01
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherHomogeneous ind-varietyeng
dc.subject.otherreal group orbiteng
dc.subject.othergeneralized flageng
dc.titleReal group orbits on ag ind-varieties of SL (∞;C)
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2016_01.pdf
Size:
238.39 KB
Format:
Adobe Portable Document Format
Description: