Mini-Workshop: Singularities in G2-geometry

Loading...
Thumbnail Image

Date

Authors

Volume

8

Issue

Journal

Series Titel

Oberwolfach reports : OWR

Book Title

Publisher

Zürich : EMS Publ. House

Link to publishers version

Abstract

All currently known construction methods of smooth compact $\mathrm G_2$-manifolds have been tied to certain singular $\mathrm G_2$-spaces, which in Joyce’s original construction are $\mathrm G_2$-orbifolds and in Kovalev’s twisted connected sum construction are complete G2-manifolds with cylindrical ends. By a slight abuse of terminology we also refer to the latter as singular $\mathrm G_2$-spaces, and in fact both construction methods may be viewed as desingularization procedures. In turn, singular $\mathrm G_2$-spaces comprise a (conjecturally large) part of the boundary of the moduli space of smooth compact $\mathrm G_2$-manifolds, and so their deformation theory is of considerable interest. Furthermore, singular $\mathrm G_2$-spaces are also important in theoretical physics. Namely, in order to have realistic low-energy physics in M-theory, one needs compact singular $\mathrm G_2$-spaces with both codimension 4 and 7 singularities according to Acharya and Witten. However, the existence of such singular $\mathrm G_2$-spaces is unknown at present. The aim of this workshop was to bring reserachers from special holonomy geometry, geometric analysis and theoretical physics together to exchange ideas on these questions.

Description

Keywords

License

Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.