Mini-Workshop: Ideals of Linear Subspaces, Their Symbolic Powers and Waring Problems

Loading...
Thumbnail Image

Date

Authors

Volume

9

Issue

Journal

Series Titel

Oberwolfach reports : OWR

Book Title

Publisher

Zürich : EMS Publ. House

Link to publishers version

Abstract

It is a fundamental challenge for many problems of significant current interest in algebraic geometry and commutative algebra to understand symbolic powers $I^{(m)}$ of homogeneous ideals $I$ in polynomial rings, particularly ideals of linear varieties. Such problems include computing Waring ranks of polynomials, determining the occurrence of equality $I^{(m)} = I^m$ (or, more generally, of containments $I^{(m)} \subseteq I^r$), computing Waldschmidt constants (i.e., determining the limit of the ratios of the least degree of an element in $I^{(m)}$ to the least degree of an element of $I^m$), and studying major conjectures such as Nagata’s Conjecture and the uniform SHGH Conjecture (which respectively specify the Waldschmidt constant of ideals of generic points in the plane and the Hilbert functions of their symbolic powers).

Description

Keywords

License

Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.