The Nagata automorphism is shifted linearizable
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2008-09 | |
dc.contributor.author | Maubach, Stephan | |
dc.contributor.author | Poloni, Pierre-Marie | |
dc.date.available | 2019-06-28T08:25:47Z | |
dc.date.issued | 2008 | |
dc.description.abstract | A polynomial automorphism F is called shifted linearizable if there exists a linear map L such that LF is linearizable. We prove that the Nagata automorphism N:=(X−YΔ−ZΔ2,Y+ZΔ,Z) where Δ=XZ+Y2 is shifted linearizable. More precisely, defining L(a,b,c) as the diagonal linear map having a,b,c on its diagonal, we prove that if ac=b2, then L(a,b,c)N is linearizable if and only if bc≠1. We do this as part of a significantly larger theory: for example, any exponent of a homogeneous locally finite derivation is shifted linearizable. We pose the conjecture that the group generated by the linearizable automorphisms may generate the group of automorphisms, and explain why this is a natural question. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/3374 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/3458 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | eng |
dc.relation.doi | https://doi.org/10.14760/OWP-2008-09 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.title | The Nagata automorphism is shifted linearizable | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2008_09.pdf
- Size:
- 216.75 KB
- Format:
- Adobe Portable Document Format
- Description: