On Dykstra's Algorithm with Bregman Projections

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume4
dc.contributor.authorPinto, Pedro
dc.contributor.authorPischke, Nicholas
dc.date.accessioned2024-10-17T05:56:20Z
dc.date.available2024-10-17T05:56:20Z
dc.date.issued2024
dc.description.abstractWe provide quantitative results on the asymptotic behavior of Dykstra's algorithm with Bregman projections, a combination of the well-known Dykstra's algorithm and the method of cyclic Bregman projections, designed to find best approximations and solve the convex feasibility problem in a non-Hilbertian setting. The result we provide arise through the lens of proof mining, a program in mathematical logic which extracts computational information from non-effective proofs. Concretely, we provide a highly uniform and computable rate of metastability of low complexity and, moreover, we also specify general circumstances in which one can obtain full and effective rates of convergence. As a byproduct of our quantitative analysis, we also for the first time establish the strong convergence of Dykstra's method with Bregman projections in infinite dimensional (reflexive) Banach spaces.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16999
dc.identifier.urihttps://doi.org/10.34657/16021
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2024-04
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.otherConvex Feasibility
dc.subject.otherBest Approximation
dc.subject.otherProjection Methods
dc.subject.otherDykstra's Algorithm
dc.subject.otherBregman Projections
dc.subject.otherLegendre Functions
dc.subject.otherRates of Convergence
dc.subject.otherMetastability
dc.subject.otherProof Mining
dc.titleOn Dykstra's Algorithm with Bregman Projections
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2024_04.pdf
Size:
420.51 KB
Format:
Adobe Portable Document Format
Description: