Graphical constructions for the sl(3),C2 and G2 invariants for virtual knots, virtual braids and free knots

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2015-13
dc.contributor.authorKauffman, Louis Hirsch
dc.contributor.authorManturov, Vassily Olegovich
dc.date.available2019-06-28T08:10:57Z
dc.date.issued2015
dc.description.abstractWe construct graph-valued analogues of the Kuperberg sl(3) and G2 invariants for virtual knots. The restriction of the sl(3) and G2 invariants for classical knots coincides with the usual Homflypt sl(3) invariant and G2 invariants. For virtual knots and graphs these invariants provide new graphical information that allows one to prove minimality theorems and to construct new invariants for free knots (unoriented and unlabeled Gauss codes taken up to abstract Reidemeister moves). A novel feature of this approach is that some knots are of sufficient complexity that they evaluate themselves in the sense that the invariant is the knot itself seen as a combinatorial structure. The paper generalizes these structures to virtual braids and discusses the relationship with the original Penrose bracket for graph colorings.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/2461
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2776
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2015-13
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherKnoteng
dc.subject.otherlinkeng
dc.subject.othervirtual knoteng
dc.subject.othergrapheng
dc.subject.otherinvarianteng
dc.subject.otherKuperberg sl(3) bracketeng
dc.subject.otherKuperberg C2 bracketeng
dc.subject.otherKuperberg G2 bracketeng
dc.subject.otherquantum invarianteng
dc.titleGraphical constructions for the sl(3),C2 and G2 invariants for virtual knots, virtual braids and free knotseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2015_13.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format
Description: