Biological shape analysis with geometric statistics and learning

dc.bibliographicCitation.seriesTitleSnapshots of Modern Mathematics from Oberwolfacheng
dc.bibliographicCitation.volume8/2022
dc.contributor.authorUtpala, Saiteja
dc.contributor.authorMiolane, Nina
dc.date.accessioned2024-10-16T13:55:11Z
dc.date.available2024-10-16T13:55:11Z
dc.date.issued2022
dc.description.abstractThe advances in biomedical imaging techniques have enabled us to access the 3D shapes of a variety of structures: organs, cells, proteins. Since biological shapes are related to physiological functions, shape data may hold the key to unlocking outstanding mysteries in biomedicine. This snapshot introduces the mathematical framework of geometric statistics and learning and its applications to biomedicine.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16864
dc.identifier.urihttps://doi.org/10.34657/15886
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH
dc.relation.doihttps://doi.org/10.14760/SNAP-2022-008-EN
dc.relation.essn2626-1995
dc.rights.licenseCC BY-SA 4.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.ddc510
dc.subject.otherGeometry and Topology
dc.subject.otherProbability Theory and Statistics
dc.titleBiological shape analysis with geometric statistics and learning
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
snapshot-2022-008.pdf
Size:
2.29 MB
Format:
Adobe Portable Document Format
Description: