Biological shape analysis with geometric statistics and learning
dc.bibliographicCitation.seriesTitle | Snapshots of Modern Mathematics from Oberwolfach | eng |
dc.bibliographicCitation.volume | 8/2022 | |
dc.contributor.author | Utpala, Saiteja | |
dc.contributor.author | Miolane, Nina | |
dc.date.accessioned | 2024-10-16T13:55:11Z | |
dc.date.available | 2024-10-16T13:55:11Z | |
dc.date.issued | 2022 | |
dc.description.abstract | The advances in biomedical imaging techniques have enabled us to access the 3D shapes of a variety of structures: organs, cells, proteins. Since biological shapes are related to physiological functions, shape data may hold the key to unlocking outstanding mysteries in biomedicine. This snapshot introduces the mathematical framework of geometric statistics and learning and its applications to biomedicine. | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/16864 | |
dc.identifier.uri | https://doi.org/10.34657/15886 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH | |
dc.relation.doi | https://doi.org/10.14760/SNAP-2022-008-EN | |
dc.relation.essn | 2626-1995 | |
dc.rights.license | CC BY-SA 4.0 Unported | |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | |
dc.subject.ddc | 510 | |
dc.subject.other | Geometry and Topology | |
dc.subject.other | Probability Theory and Statistics | |
dc.title | Biological shape analysis with geometric statistics and learning | |
dc.type | Report | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- snapshot-2022-008.pdf
- Size:
- 2.29 MB
- Format:
- Adobe Portable Document Format
- Description: