Exact rate of convergence of k-nearest-neighbor classification rule
Loading...
Date
2017
Authors
Volume
2017-25
Issue
Journal
Series Titel
Oberwolfach Preprints (OWP)
Book Title
Publisher
Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach
Link to publishers version
Abstract
A binary classification problem is considered. The excess error probability of the k-nearest neighbor classification rule according to the error probability of the Bayes decision is revisited by a decomposition of the excess error probability into approximation and estimation error. Under a weak margin condition and under a modified Lipschitz condition, tight upper bounds are presented such that one avoids the condition that the feature vector is bounded.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.