Interaction between immobilized polyelectrolyte complex nanoparticles and human mesenchymal stromal cells

dc.bibliographicCitation.firstPage2205eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.volume9eng
dc.contributor.authorWoltmann, B.
dc.contributor.authorTorger, B.
dc.contributor.authorMüller, M.
dc.contributor.authorHempel, U.
dc.date.accessioned2020-10-28T14:52:47Z
dc.date.available2020-10-28T14:52:47Z
dc.date.issued2014
dc.description.abstractBackground: Implant loosening or deficient osseointegration is a major problem in patients with systemic bone diseases (eg, osteoporosis). For this reason, the stimulation of the regional cell population by local and sustained drug delivery at the bone/implant interface to induce the formation of a mechanical stable bone is promising. The purpose of this study was to investigate the interaction of polymer-based nanoparticles with human bone marrow-derived cells, considering nanoparticles' composition and surface net charge. Materials and methods: Polyelectrolyte complex nanoparticles (PECNPs) composed of the polycations poly(ethyleneimine) (PEI), poly(L-lysine) (PLL), or (N,N-diethylamino)ethyldextran (DEAE) in combination with the polyanions dextran sulfate (DS) or cellulose sulfate (CS) were prepared. PECNPs' physicochemical properties (size, net charge) were characterized by dynamic light scattering and particle charge detector measurements. Biocompatibility was investigated using human mesenchymal stromal cells (hMSCs) cultured on immobilized PECNP films (5-50 nmol·cm-2) by analysis for metabolic activity of hMSCs in dependence of PECNP surface concentration by MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner salt) assay, as well as cell morphology (phase contrast microscopy). Results: PECNPs ranging between ~50 nm and 150 nm were prepared. By varying the ratio of polycations and polyanions, PECNPs with a slightly positive (PEC+NP) or negative (PEC-NP) net charge were obtained. The PECNP composition significantly affected cell morphology and metabolic activity, whereas the net charge had a negligible influence. Therefore, we classified PECNPs into "variant systems" featuring a significant dose dependency of metabolic activity (DEAE/CS, PEI/DS) and "invariant systems" lacking such a dependency (DEAE/DS, PEI/CS). Immunofluorescence imaging of fluorescein isothiocyanate isomer I (FITC)-labeled PECNPs suggested internalization into hMSCs remaining stable for 8 days. Conclusion: Our study demonstrated that PECNP composition affects hMSC behavior. In particular, the PEI/CS system showed biocompatibility in a wide concentration range, representing a suitable system for local drug delivery from PECNP-functionalized bone substitute materials.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4444
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5815
dc.language.isoengeng
dc.publisherAuckland : DOVE Medical Presseng
dc.relation.doihttps://doi.org/10.2147/IJN.S61198
dc.relation.ispartofseriesInternational Journal of Nanomedicine 9 (2014), Nr. 1eng
dc.relation.issn1176-9114
dc.rights.licenseCC BY-NC 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/eng
dc.subjectBiocompatibilityeng
dc.subjectMesenchymal stromal cellseng
dc.subjectMorphologyeng
dc.subjectMTS assayeng
dc.subjectPolyelectrolyte complex nanoparticleseng
dc.subject(n,n diethylamino)ethyldextraneng
dc.subjectcellulose sulfateeng
dc.subjectdextran derivativeeng
dc.subjectdextran sulfateeng
dc.subjectnanoparticleeng
dc.subjectpolyethyleneimineeng
dc.subjectpolylysineeng
dc.subjectunclassified drugeng
dc.subjectelectrolyteeng
dc.subjectnanoparticleeng
dc.subjectpolymereng
dc.subjectarticleeng
dc.subjectbiocompatibilityeng
dc.subjectcell interactioneng
dc.subjectcell metabolismeng
dc.subjectcell structureeng
dc.subjectchemical compositioneng
dc.subjectcontrolled studyeng
dc.subjectfluorescence imagingeng
dc.subjecthumaneng
dc.subjecthuman celleng
dc.subjectimmobilizationeng
dc.subjectinternalizationeng
dc.subjectmesenchymal stroma celleng
dc.subjectmolecular interactioneng
dc.subjectparticle sizeeng
dc.subjectphysical chemistryeng
dc.subjectscanning force microscopyeng
dc.subjectsurface chargeeng
dc.subjectadsorptioneng
dc.subjectcell sizeeng
dc.subjectcomparative studyeng
dc.subjectcytologyeng
dc.subjectdose responseeng
dc.subjectdrug effectseng
dc.subjectmaterials testingeng
dc.subjectmesenchymal stroma celleng
dc.subjectmetabolismeng
dc.subjectstatic electricityeng
dc.subjectultrastructureeng
dc.subjectAdsorptioneng
dc.subjectCell Sizeeng
dc.subjectDose-Response Relationship, Drugeng
dc.subjectElectrolyteseng
dc.subjectHumanseng
dc.subjectMaterials Testingeng
dc.subjectMesenchymal Stromal Cellseng
dc.subjectNanoparticleseng
dc.subjectParticle Sizeeng
dc.subjectPolymerseng
dc.subjectStatic Electricityeng
dc.subject.ddc570eng
dc.titleInteraction between immobilized polyelectrolyte complex nanoparticles and human mesenchymal stromal cellseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleInternational Journal of Nanomedicineeng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectBiowissenschaften/Biologieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Woltmann2014.pdf
Size:
3.93 MB
Format:
Adobe Portable Document Format
Description: