Interaction between immobilized polyelectrolyte complex nanoparticles and human mesenchymal stromal cells

dc.bibliographicCitation.firstPage2205eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.journalTitleInternational Journal of Nanomedicineeng
dc.bibliographicCitation.volume9eng
dc.contributor.authorWoltmann, B.
dc.contributor.authorTorger, B.
dc.contributor.authorMüller, M.
dc.contributor.authorHempel, U.
dc.date.accessioned2020-10-28T14:52:47Z
dc.date.available2020-10-28T14:52:47Z
dc.date.issued2014
dc.description.abstractBackground: Implant loosening or deficient osseointegration is a major problem in patients with systemic bone diseases (eg, osteoporosis). For this reason, the stimulation of the regional cell population by local and sustained drug delivery at the bone/implant interface to induce the formation of a mechanical stable bone is promising. The purpose of this study was to investigate the interaction of polymer-based nanoparticles with human bone marrow-derived cells, considering nanoparticles' composition and surface net charge. Materials and methods: Polyelectrolyte complex nanoparticles (PECNPs) composed of the polycations poly(ethyleneimine) (PEI), poly(L-lysine) (PLL), or (N,N-diethylamino)ethyldextran (DEAE) in combination with the polyanions dextran sulfate (DS) or cellulose sulfate (CS) were prepared. PECNPs' physicochemical properties (size, net charge) were characterized by dynamic light scattering and particle charge detector measurements. Biocompatibility was investigated using human mesenchymal stromal cells (hMSCs) cultured on immobilized PECNP films (5-50 nmol·cm-2) by analysis for metabolic activity of hMSCs in dependence of PECNP surface concentration by MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner salt) assay, as well as cell morphology (phase contrast microscopy). Results: PECNPs ranging between ~50 nm and 150 nm were prepared. By varying the ratio of polycations and polyanions, PECNPs with a slightly positive (PEC+NP) or negative (PEC-NP) net charge were obtained. The PECNP composition significantly affected cell morphology and metabolic activity, whereas the net charge had a negligible influence. Therefore, we classified PECNPs into "variant systems" featuring a significant dose dependency of metabolic activity (DEAE/CS, PEI/DS) and "invariant systems" lacking such a dependency (DEAE/DS, PEI/CS). Immunofluorescence imaging of fluorescein isothiocyanate isomer I (FITC)-labeled PECNPs suggested internalization into hMSCs remaining stable for 8 days. Conclusion: Our study demonstrated that PECNP composition affects hMSC behavior. In particular, the PEI/CS system showed biocompatibility in a wide concentration range, representing a suitable system for local drug delivery from PECNP-functionalized bone substitute materials.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4444
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5815
dc.language.isoengeng
dc.publisherAuckland : DOVE Medical Presseng
dc.relation.doihttps://doi.org/10.2147/IJN.S61198
dc.relation.issn1176-9114
dc.rights.licenseCC BY-NC 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/eng
dc.subject.ddc570eng
dc.subject.otherBiocompatibilityeng
dc.subject.otherMesenchymal stromal cellseng
dc.subject.otherMorphologyeng
dc.subject.otherMTS assayeng
dc.subject.otherPolyelectrolyte complex nanoparticleseng
dc.subject.other(n,n diethylamino)ethyldextraneng
dc.subject.othercellulose sulfateeng
dc.subject.otherdextran derivativeeng
dc.subject.otherdextran sulfateeng
dc.subject.othernanoparticleeng
dc.subject.otherpolyethyleneimineeng
dc.subject.otherpolylysineeng
dc.subject.otherunclassified drugeng
dc.subject.otherelectrolyteeng
dc.subject.othernanoparticleeng
dc.subject.otherpolymereng
dc.subject.otherarticleeng
dc.subject.otherbiocompatibilityeng
dc.subject.othercell interactioneng
dc.subject.othercell metabolismeng
dc.subject.othercell structureeng
dc.subject.otherchemical compositioneng
dc.subject.othercontrolled studyeng
dc.subject.otherfluorescence imagingeng
dc.subject.otherhumaneng
dc.subject.otherhuman celleng
dc.subject.otherimmobilizationeng
dc.subject.otherinternalizationeng
dc.subject.othermesenchymal stroma celleng
dc.subject.othermolecular interactioneng
dc.subject.otherparticle sizeeng
dc.subject.otherphysical chemistryeng
dc.subject.otherscanning force microscopyeng
dc.subject.othersurface chargeeng
dc.subject.otheradsorptioneng
dc.subject.othercell sizeeng
dc.subject.othercomparative studyeng
dc.subject.othercytologyeng
dc.subject.otherdose responseeng
dc.subject.otherdrug effectseng
dc.subject.othermaterials testingeng
dc.subject.othermesenchymal stroma celleng
dc.subject.othermetabolismeng
dc.subject.otherstatic electricityeng
dc.subject.otherultrastructureeng
dc.subject.otherAdsorptioneng
dc.subject.otherCell Sizeeng
dc.subject.otherDose-Response Relationship, Drugeng
dc.subject.otherElectrolyteseng
dc.subject.otherHumanseng
dc.subject.otherMaterials Testingeng
dc.subject.otherMesenchymal Stromal Cellseng
dc.subject.otherNanoparticleseng
dc.subject.otherParticle Sizeeng
dc.subject.otherPolymerseng
dc.subject.otherStatic Electricityeng
dc.titleInteraction between immobilized polyelectrolyte complex nanoparticles and human mesenchymal stromal cellseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectBiowissenschaften/Biologieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Woltmann2014.pdf
Size:
3.93 MB
Format:
Adobe Portable Document Format
Description: