Mini-Workshop: Kronecker, Plethysm, and Sylow Branching Coefficients and their Applications to Complexity Theory
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
The Kronecker, plethysm and Sylow branching coefficients describe the decomposition of representations of symmetric groups obtained by tensor products and induction. Understanding these decompositions has been hailed as one of the definitive open problems in algebraic combinatorics and has profound and deep connections with representation theory, symplectic geometry, complexity theory, quantum information theory, and local-global conjectures in representation theory of finite groups. The overarching theme of the Mini-Workshop has been the use of hidden, richer representation theoretic structures to prove and disprove conjectures concerning these coefficients. These structures arise from the modular and local-global representation theory of symmetric groups, graded representation theory of Hecke and Cherednik algebras, and categorical Lie theory.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.