On the prediction of stationary functional time series

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2014-06
dc.contributor.authorAue, Alexander
dc.contributor.authorNorinho, Diogo Dubart
dc.contributor.authorHörmann, Siegfried
dc.date.available2019-06-28T08:13:37Z
dc.date.issued2014
dc.description.abstractThis paper addresses the prediction of stationary functional time series. Existing contributions to this problem have largely focused on the special case of first-order functional autoregressive processes because of their technical tractability and the current lack of advanced functional time series methodology. It is shown here how standard multivariate prediction techniques can be utilized in this context. The connection between functional and multivariate predictions is made precise for the important case of vector and functional autoregressions. The proposed method is easy to implement, making use of existing statistical software packages, and may therefore be attractive to a broader, possibly non-academic, audience. Its practical applicability is enhanced through the introduction of a novel functional final prediction error model selection criterion that allows for an automatic determination of the lag structure and the dimensionality of the model. The usefulness of the proposed methodology is demonstrated in a simulation study and an application to environmental data, namely the prediction of daily pollution curves describing the concentration of particulate matter in ambient air. It is found that the proposed prediction method often significantly outperforms existing methods.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/2887
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2936
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2014-06
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherDimension reductioneng
dc.subject.otherFinal prediction erroreng
dc.subject.otherForecastingeng
dc.subject.otherFunctional autoregressionseng
dc.subject.otherFunctional principal componentseng
dc.subject.otherFunctional time serieseng
dc.subject.otherParticulate mattereng
dc.subject.otherVector autoregressionseng
dc.titleOn the prediction of stationary functional time serieseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2014_06.pdf
Size:
515.38 KB
Format:
Adobe Portable Document Format
Description: