Solid extensions of the Cesàro operator on the Hardy space H2(D)
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2013-11 | |
dc.contributor.author | Curbera, Guillermo P. | |
dc.contributor.author | Ricker, Werner J. | |
dc.date.available | 2019-06-28T08:24:45Z | |
dc.date.issued | 2013 | |
dc.description.abstract | We introduce and study the largest Banach space of analytic functions on the unit disc which is solid for the coefficient- wise order and to which the classical Ces`aro operator C : H2 → H2 can be continuously extended, while still maintaining its values in H2. Properties of this Banach space H(ces2) are presented as well as a characterization of individual analytic functions which belong to H(ces2). In addition, both the multiplier space of H(ces2) and the spectrum of C : H(ces2) → H(ces2) are determined. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/3215 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/3419 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | eng |
dc.relation.doi | https://doi.org/10.14760/OWP-2013-11 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Harmonic manifolds | eng |
dc.subject.other | geodesic flows | eng |
dc.subject.other | Lichnerowicz conjecture | eng |
dc.title | Solid extensions of the Cesàro operator on the Hardy space H2(D) | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2013_11.pdf
- Size:
- 256.45 KB
- Format:
- Adobe Portable Document Format
- Description: