A Note on Endpoint Bochner-Riesz Estimates

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume17
dc.contributor.authorBeltran, David
dc.contributor.authorRoos, Joris
dc.contributor.authorSeeger, Andreas
dc.date.accessioned2024-10-17T05:47:42Z
dc.date.available2024-10-17T05:47:42Z
dc.date.issued2023
dc.description.abstractWe revisit an $\varepsilon$-removal argument of Tao to obtain sharp $L^p \to L^r(L^p)$ estimates for sums of Bochner-Riesz bumps which are conditional on non-endpoint bounds for single scale bumps. These can be used to obtain sharp conditional sparse bounds for Bochner-Riesz multipliers at the critical index, refining the conditional weak-type $(p,p)$ estimates of Tao.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16986
dc.identifier.urihttps://doi.org/10.34657/16008
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doi10.14760/OWP-2023-17
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subjectBochner-Riesz Means
dc.subjectWeak-Type Estimates
dc.subject.ddc510
dc.titleA Note on Endpoint Bochner-Riesz Estimates
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2023_17.pdf
Size:
529.54 KB
Format:
Adobe Portable Document Format
Description: